FACULTY OF SCIENCE DEPARTMENT OF INDUSTRIALMATHEMATICS/APPLIED STATISTICS
FIRST SEMESTER AND ACTION 2019/2020 SESSION FIRST SEMESTER EXAMINATION 2019/2020 SESSION
STA 201: STATISTICS FOR APPLIED SCIENCES
TIME: 90 TIME: 90 minutes INSTRUCTION: Answers all questions in SECTION A in the space(s) provided and any two questions in SECTION B. Write your Registration number and Department clearly 1 List 4 reasons for statistical sampling (i) Limited Resource (ii) Destructive testing Ols fal (iii) scarcity (iv) speed and Accuracy. n- half 2 List 6 methods of data collection (i)Observation (ii)Questionane (iii) experimental results (iv) Telephone Interview(v) personal Intervior(vi) Rogistration Consistery List 4 properties of a good estimator (i) Efficiency ..... (ii) Sufficiency (iii) Unbiasness est im ates (iv) Consistency Epprocency + Let X be a binomially distributed random variable based on 8 repetition of an experiment. (i) State the probability mass function (pmf) of X. [ii) If p=0.4, find P(X>5). O (14.1) \( \text{O} \) \( \text{O sufficiency on-10 where Q=1-P A drug manufacturer claims his drug is effective in curing a parceular pe of dieses frequencies SECTION B(THEORY) The frequency distribution for the systolic blood pressure reading (mmHg) of 120 randomly selected EBSU students is shown below, find the (i) mean;(ii) median;(iii) third quartile, and (iv) 70th percentile Class Frequency 80 - 94 95 - 109 110 - 124 125 - 139 140 - 154 155 - 169 16

## EBONYI STATE UNIVERSITY, ABAKALIKI

## DEPARTMENT OF INDUSTRIALMATHEMATICS/APPLIED STATISTICS FIRST SEMESTER EXAMATHEMATICS/APPLIED STATISTICS

FIRST SEMESTER EXAMINATION 2018/2019 SESSION
STATISTICS FOR ARRIVATION 2018/2019 SESSION TIME: 90 MINUTES STA 201: STATISTICS FOR APPLIED SCIENCES

|    | Reg. NoDeptSignature:                                                                                                                                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | RUCTION: Fill in the answers in the space(s) provided. Don't use any other answer script.  your Reg. No. Dept. and signature clearly on every page of this paper. Answer all                                                                                             |
|    | (ii)                                                                                                                                                                                                                                                                     |
| 2. | If the pdf of a random variable X is given by $f(x) = 3x^2$ for $0 \le x \le 1$ , find the (i) expected value of X(ii) variance of X(iii)(iii)                                                                                                                           |
|    | (iv)                                                                                                                                                                                                                                                                     |
| 4. | Let X be a binomially distributed random variable based on 8 repetition of an experiment. (i) State the probability mass function (pmf) of X                                                                                                                             |
| -  | State the pdf of X                                                                                                                                                                                                                                                       |
| 6. | Let X be a normally distributed random variable with mean $\mu=15$ and variance,                                                                                                                                                                                         |
|    | $\sigma^2 = 9$ find P[X<18]                                                                                                                                                                                                                                              |
| 7. | Assuming random samples taken from a population with variance gave the following data: $n=16$ ; $\bar{X}=30$ ; $\sigma^2=16$ and $\alpha=5\%$ . The confidence interval is                                                                                               |
|    | Given that the degree of freedom $(d,f)$ of a random sample is 14 at 1% $\alpha$ level of                                                                                                                                                                                |
| 8. | significance using student's t – distribution table find $\frac{10.01}{2}$ , (14)                                                                                                                                                                                        |
| 9. | Consider the following measurements                                                                                                                                                                                                                                      |
|    | X 14 16 22 15 20<br>Y 12 10 11 8 9                                                                                                                                                                                                                                       |
|    | (i) The regression equation of y on x is                                                                                                                                                                                                                                 |
|    | (i) The regression equation of your                                                                                                                                                                                                                                      |
|    | <ul> <li>(ii) The value of y when x = 26 is</li> <li>(iii) State the formula for Spearman's correlation coefficient of X and Y(iv) find the Spearman's correlation coefficient between X and Y(iv) find the Spearman's correlation coefficient between X and Y</li></ul> |
|    |                                                                                                                                                                                                                                                                          |

- Suppose 3% of items made by a shoe factory are defective. Given that  $\lambda=3$ , find the 10. probability that there are two defective items. A drug manufacturer claims his drug is effective in curing a particular type of disease. The drug given to 400 persons saw 360 recovering from the disease (i) Obtain the 11. estimate of the proportion p recovering......(ii) Obtain the 95% confidence interval of proportion p..... In Chi-square test, we compare the(i) and (ii) 12. frequencies A class consists of 5 girls and 10 boys. If a committee of 5 is chosen at random from the 13. class, find the probability that :(i) 3 boys are selected......(ii) at least one girl is selected..... of analysis 14. (i)State 15. The frequency distribution for the systolic blood pressure reading (mmHg) of 120 median......(iii) third quartile..... (iv) 74th percentile..... Frequency Class 13 80 - 94 18 95 - 109 17 110 - 124 33 125 - 139 23 140 - 154
  - 16. A study was conducted to determine whether there is a relationship between jogging and blood pressure. Random samples of 220 subjects were selected. Given the following contingency table

16

| pressure |           |                       |
|----------|-----------|-----------------------|
| Low      | Moderate  | High                  |
| 30       | 70        | 24                    |
| 27       | 50        | 19                    |
|          | Low<br>30 | Low Moderate<br>30 70 |

Using the information above and  $\alpha = 5\%$ , find the values for the following:

155 - 169

(i)  $X_{(r-1)(c-1)}^2, \alpha =$  (ii)  $E_{11}$  (iv)  $E_{21}$  (v)  $E_{22}$ 

#### Philosophany

+ DOLENCE, LOOLY

EBONYI STATE UNIVERSITY, ABAKALIKI FACULTY OF SCIENCE

DEPARTMENT OF INDUSTRIALMATHEMATICS/APPLIED STATISTICS FIRST MID-SEMESTER EXAMINATION 2019/2020 SESSION (15%) STA 201: STATISTICS FOR APPLIED SCIENCES

INSTRUCTION: Answers all questions. Write your Name; Registration number and Department

- 1. List 4 properties of a good estimator (I) Cantistency (II) South Leggin Effection of (IV) Untratedness
- 2. Let X be a binomially distributed random variable based on 8 repetition of an experiment. (i) State the probability mass function (pmf) of X\_\_\_\_\_\_ (ii) If p=0.4, find 3.
- A drug manufacturer claims his drug is effective in curing a particular type of disease. The drug given to 400 persons saw 360 recovering from the disease (i) Obtain the estimate of the proportion p recovering [ii] Obtain the 95% confidence interval of
- A class consists of 5 girls and 10 boys. If a committee of 5 js chosen at random from the
  - (i) State a mathematical model for a simple linear regression  $4 = 6 + 6 \times 10^{-1}$
  - The frequency distribution for the systolic blood pressure reading (mmHg) of 120 randomly selected EBSU students is shown below, find the (i) mean; (ii) median; (iii) third quartile, and

| Class<br>80 - 94<br>95 - 109<br>110 - 124<br>125 - 139<br>140 - 154<br>155 - 169 | i) mean = 127.35<br>ii) median = 144.04<br>iii) Third Quante = 145.36<br>iv) 74th percentile=144.56 | The same of the sa | 文 87 27 2 11 3 4 6 2 | FX<br>1181<br>1886<br>1989<br>4356<br>3881<br>2592 |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|
|                                                                                  | P. T. D for answer:                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 15285<br>Efx                                       |

7. Consider the following measurements

- The regression equation of you x is;
- The value of y when x = 26



# EBONYI STATE UNIVERSITY ABAKALIKI

### FACULTY OF SCIENCE

### DEPARTMENT OF INDUSTRIAL MATHEMATICS/STATISTICS STATISTICS FOR APPLIED SCIENCES 1 STA 201

| ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TATISTICS FOR APPLIED SCI                                             | TIME ALLOWER                                | 2HOURS              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|---------------------|
| INSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : ANSWER ALL QUESTIONS                                                |                                             |                     |
| 1i. If A and B are mutua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ally exclusive events, then P (A                                      | or B) equals                                |                     |
| The second of th | Es annel actionates                                                   |                                             | f an evnerimant     |
| 2. Let X be a binomially P is the probability of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | distributed random variable, buccess(i) State the probability         | mass function (pmf) of                      | ( —                 |
| (ii) If n=6, and p=0.5. Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ind P(x<4)                                                            |                                             |                     |
| $S^2 = 16$ . The confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m samples taken from a popular interval at $\alpha = 5\%$ is given by |                                             |                     |
| 4 A manufacturer of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | certain transistor claims that sample of 160 transistors, only        | the parts used for his p                    | production are non- |
| i. Obtain the estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of the proportion P of non-def                                        | ective transistors                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fidence interval for the propor                                       |                                             |                     |
| 5. State a mathematica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al model for a simple linear reg                                      | gression                                    |                     |
| 6. List two methods of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | finding an estimator of a popu                                        | ulation parameter                           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii)                                                                  |                                             |                     |
| 7. Two well- known hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pothesis are:                                                         |                                             | 2.*                 |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | I de la |                     |
| 8. Class interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Frequency                                                             |                                             |                     |
| 57 - 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                    |                                             |                     |
| 67 - 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                    |                                             | 1                   |
| 77 - 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                    |                                             |                     |
| 87 - 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                    |                                             |                     |
| 97 - 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                    |                                             |                     |
| 107 - 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                    |                                             |                     |
| 117 - 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                     |                                             |                     |

#### EBONYI STATE UNIVERSITY, ABAKALIKI

#### FACULTY OF SCIENCE

### DEPARTMENT OF INDUSTRIAL MATHEMATICS/APPLIED STATISTICS FIRST SEMESTER EXAMINATION 2019/2020 SESSION STA 201: STATISTICS FOR APPLIED SCIENCES TIME: 90 minutes

INSTRUCTION: Answers all questions in SECTION A in the space(s) provided and any two questions in SECTION B. Write your Registration number and Department clearly

| 1     | F45                                                 | for statistical sampl<br>(ii)                                                            | ing .                                  | _                                                                                                |
|-------|-----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|
|       | (iii)                                               | (iv)                                                                                     |                                        |                                                                                                  |
| 2     | List 6 methods                                      | of data collection                                                                       |                                        |                                                                                                  |
|       | (i)                                                 | (ii) ·                                                                                   | <u>- (</u> iii)                        |                                                                                                  |
|       | (iv)                                                | (v)                                                                                      | (vi)                                   |                                                                                                  |
| 3     | List 4 propertie                                    | es of a good estimator (i                                                                | ),(ii)                                 | /(iii)                                                                                           |
| 4     | Let X be a lexperiment. (i                          | oinomially distributed                                                                   |                                        | based on 8 repetition of an nf) of X(ii) If                                                      |
| 5     | The drug give<br>estimate of th<br>interval of prop | n to 400 persons saw<br>e proportion p recov<br>portion p                                | 360 recovering (<br>ering(             | ring a particular type of disease. from the disease (i) Obtain the ii) Obtain the 95% confidence |
| 6     | In Chi-square<br>frequencies                        | test, we compare the                                                                     | e(i)                                   | and (ii)                                                                                         |
| 7     | )randomly selec                                     | SECTION B(TH<br>distribution for the<br>sted EBSU students is<br>nd (iv) 70th percentile | systolic blood pro<br>shown below, fir | essure reading (mmHg) of 120 nd the (i) mean;(ii) median;(iii)                                   |
| Class |                                                     |                                                                                          | Frequency                              | 50 ly                                                                                            |
| 30 -  | 94                                                  |                                                                                          | 13                                     |                                                                                                  |
| 95 -  | 109                                                 |                                                                                          | 21                                     |                                                                                                  |
| 110 - | 124                                                 |                                                                                          | 17 .                                   |                                                                                                  |
| 25 -  | 139                                                 |                                                                                          | 30                                     |                                                                                                  |
| 40 -  | 154                                                 |                                                                                          | 23                                     |                                                                                                  |
| 155 - | 169                                                 |                                                                                          | 16                                     |                                                                                                  |



POUVOIT3
4 Days Standby



8 A study was conducted to determine whether there is a relationship between jogging and blood pressure. Random samples of 210 subjects were selected. Given the following contingency table

| T. T | Blood<br>pressur | e        |      |
|------------------------------------------|------------------|----------|------|
| Togging<br>Status                        | Low              | Moderate | High |
| Joggers                                  | 30               | 60       | 24   |
| Non-joggers                              | 27               | 50       | 19   |
|                                          |                  |          |      |

Using the information above and  $\alpha = 5\%$ , find the values for the following:

(i) 
$$X_{(r-1)(c-1)}^2, \alpha$$
; (ii)  $E_{11}$ 

(iii) 
$$E_{12}$$
; (iv)  $E_{21}$ 

9 Consider the following measurements

- (i) The regression equation of you x is:
- (ii) The value of y when x = 26;
- (iii) State the formula for Spearman's correlation coefficient of X and Y; (iv) find the Spearman's correlation coefficient between X and Y

